
eFlows4HPC Documentation
Eflows4HPC Consortium

Last updated : March, 2022

Online version available at eFlows4HPC - ReadTheDocs

https://eflows4hpc.readthedocs.io/en/latest/

Table of contents

Table of contents i

List of figures iii

List of tables v

1 eFlows4HPC Overview 3
1.1 More information: . 4
1.2 Acknowledgements . 4

2 Software Stack 5
2.1 Gateway Services . 7

2.1.1 Data Catalog . 7
2.1.2 Data Logistics Service . 7
2.1.3 Alien4Cloud . 7
2.1.4 Ystia Orchestrator . 8
2.1.5 Workflow Execution Service . 8

2.2 Runtime Components . 8
2.2.1 PyCOMPSs . 8
2.2.2 dataClay . 9
2.2.3 Hecuba . 9

2.3 ML and DA Frameworks . 9
2.3.1 dislib . 9
2.3.2 EDDL . 10
2.3.3 HeAT . 10
2.3.4 Ophidia . 11
2.3.5 ParSoDA . 12

3 Programming Interfaces for integrating HPC and DA/ML workflows 15
3.1 Software Invocation Description . 16

3.1.1 Software decorator . 16
3.1.2 Configuration File . 16
3.1.3 Examples . 16

4 HPCWaaS Methodology 19
4.1 Development Interface . 20

4.1.1 Setup . 20
4.1.2 Creating an application based on the minimal workflow example 22
4.1.3 Make your workflow available to end-users using the HPCWaaS API 22

4.2 Execution API . 22
4.2.1 Basic usage . 26

5 Usage Example 27
5.1 Implementing Data Logistics Pipeline . 27

i

5.1.1 DAG Definition . 28
5.1.2 Data Movement Tasks . 28
5.1.3 Connection setup . 29
5.1.4 Closing remarks . 29

5.2 PyCOMPSs Workflow . 29
5.3 Integration in TOSCA . 30

5.3.1 Data Logistics Service TOSCA component . 31
5.3.2 PyCOMPSs TOSCA component . 32
5.3.3 Minimal workflow TOSCA topology template . 32

List of figures

1 Software Stack release overview. 5
2 Deployment view of the different Software Stack components. 6

3 HPC Workfow as a Service overview . 19
4 Click on Git import to add components . 20
5 Click on Git location to define imports from a git repository . 20
6 Alien4Cloud setup a catalog git repository . 21
7 Manage applications in Alien4Cloud . 22
8 Alien4Cloud create a template based application . 23
9 Alien4Cloud minimal workflow topology . 24
10 Alien4Cloud deploy an application . 25
11 Alien4Cloud add tags to an application . 25

12 Alien4Cloud minimal workflow topology . 34

iii

List of tables

v

eFlows4HPC Documentation, 1.0

Welcome to the documentation page of the eFlows4HPC Software Stack. It is organized in the following sections:

1

http://www.eflows4hpc.eu

eFlows4HPC Documentation, 1.0

2

Chapter 1

eFlows4HPC Overview

eFlows4HPC aims at designing and implementing a European workflow platform that enables the design of com-
plex applications that integrate HPC processes, data analytics and artificial intelligence, making use of the HPC
resources in an easy, efficient and responsible way as well as enabling the accessibility and reusability of applications
to reduce the time to solution.

As the main outcome, the project is delivering the eFlows4HPC software stack which integrates different compo-
nents to provide an overall workflow management system. One of the core functionalities of the software stack
is the definition of the complex workflows that combine HPC, HPDA and ML frameworks and the integration of
large volumes of data from different sources and locations.

On top of this software stack, the project builds an HPC Workflow as a Service (HPCWaaS) platform to facilitate
the reusability of these complex workflows in federated HPC infrastructure. The goal is to provide methodologies
and tools that enable sharing and reuse of existing workflows and that assist when adapting workflow templates
to create new workflow instances.

3

eFlows4HPC Documentation, 1.0

The HPCWaaS platform and the eFlows4HPC software stack will be validated by use cases organised in three
pillars which represent the main sectors that the project targets.

1.1 More information:

• Project website: https://www.eflows4hpc.eu
• Github organization: https://github.com/eflows4hpc

1.2 Acknowledgements

The eFlows4HPC project is founded by the European High-Performance Computing Joint Undertaking (JU)
under grant agreement No 955558. The JU receives support from the European Union’s Horizon 2020 research
and innovation programme and Spain, Germany, France, Italy, Poland, Switzerland, Norway

4 Chapter 1. eFlows4HPC Overview

https://www.eflows4hpc.eu
https://github.com/eflows4hpc

Chapter 2

Software Stack

eFlows4HPC software stack integrates different components to provide an overall workflow management system.
Figure 1 shows the components included in the eFlows4HPC Software Stack according to their functionality. On
the top, we can find the programming models used for the definition of the complex workflows that combine HPC,
HPDA and ML frameworks and the integration of large volumes of data from different sources and locations. Below
this part, we can find the components to facilitate the accessibility and re-usability of workflows, Finally in the
bottom part of the stack we can see the different components for deployment, execution and data management.
Components in gray refer to components to be developed or integrated in the stack in the future releases.

Figure 1: Software Stack release overview.

The different components of the stack can be also are grouped according to their deployment and usage as depicted
in Figure 2. The Gateway Services are the components which are deployed outside the computing interface which
are used to provide the HPC Workflow as a Service capabilities (Alien4Cloud and Execution API), orchestrate the
deployment, execution and data movement of the overall workflow (Ystia Orchestrator and Data Logistics Service).
The Runtime components are deployed in the computing infrastructure to perform the parallel execution and data
management of the workflow inside the assigned computing nodes. Finally, the HPDA/ML Frameworks are the
software components which are used inside the workflows to implement the Machine Learning and Data Analytic
algorithms.

Next sections provide an overview of the software stack components as well as the links to the open source

5

eFlows4HPC Documentation, 1.0

Figure 2: Deployment view of the different Software Stack components.

6 Chapter 2. Software Stack

eFlows4HPC Documentation, 1.0

repositories, installation and usage guides.

2.1 Gateway Services

2.1.1 Data Catalog

The following describes the architecture of the eFlows4HPC Data Catalog. The service will provide information
about data sets used in the project. The catalog will store information about locations, schemas, and additional
metadata.

Main features:

• keep track of data sources used in the project (by workflows)
• enable registration of new data sources
• provide user-view as well as simple API to access the information

The Data Catalog is mainly developed at FZJ. The source code for stable versions can be found in this Repository.
A description of the architecture can be found here.

The running istance with content is hosted on the HDF Cloud and can be accessed at this Address.

The Data Catalog offers an API to access and manipulate its content.

2.1.2 Data Logistics Service

The Data Logistics Service is responsible for data movements part of the workflows developed in the project.

The service is based on Apache Airflow. The project specific extensions and data pipelines formalizing the data
movements can be found in the project repository.

From the user perspective, the most important part of the service are the definitions of data movements (pipelines).
Some examples (e.g. minimal workflow) of those are provided in the repository. A good starting point for defining
own pipelines is the original documentation. Please note that the pipelines are defined in Python programming
language and can execute shell scripts. That means that if the users already have their own solution for data
movements which are based on scripts or Python programs they can easily be moved to the Data Logistics Service
to obtain a running environment with monitoring, retires upon failure, etc.

There is a testing instance of the data logistics service hosted in HDF could which can be accessed.

2.1.3 Alien4Cloud

Alien4Cloud is an REST API and a Graphical User Interface that allows to store, design and deploy complex
applications made of reusable components thanks to the TOSCA specification.

In the context of eFlows4HPC, Alien4Cloud will be used by a workflow developer to design and deploy applicative
workflows. End users will not interact directly with Alien4Cloud but with a simplified REST interface called the
HPC Workflow as a Service (HPCWaaS) API. The HPCWaaS API will in turn interact with Alien4Cloud REST
API to execute the workflows.

Alien4Cloud relies on the Yorc orchestration engine to actually execute the workflows.

Alien4Cloud is an open source project developed by Atos. The source code can be found in the project repository
and the documentation is available online.

2.1. Gateway Services 7

https://github.com/eflows4hpc/datacatalog
https://github.com/eflows4hpc/datacatalog/blob/master/arch/arch.adoc
https://datacatalog.fz-juelich.de/
https://datacatalog.fz-juelich.de/docs
https://airflow.apache.org
https://github.com/eflows4hpc/data-logistics-service
https://github.com/eflows4hpc/data-logistics-service
https://airflow.apache.org/docs/apache-airflow/stable/index.html
http://zam10220.zam.kfa-juelich.de:7001
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.html
https://github.com/eflows4hpc/alien4cloud
https://alien4cloud.github.io/#/documentation/3.3.0/index.html

eFlows4HPC Documentation, 1.0

2.1.4 Ystia Orchestrator

Yorc is a TOSCA orchestration engine. It is designed to execute workflows on hybrid (Cloud / HPC / CaaS / . . .)
infrastructures.

In the context of eFlows4HPC, Yorc will be driven by Alien4Cloud. Developers and end users do not directly
interact with Yorc.

Yorc is an open source project developed by Atos. The source code can be found in the project repository and the
documentation is available online.

2.1.5 Workflow Execution Service

The Workflow Execution Service is a RESTful web service that provides a way for end users to execute workflows.
This component is developed specifically for the eFlows4HPC project.

This service will interact with Alien4Cloud list and trigger applicative workflows and with Hashicorp Vault to
manage users access credentials.

The source code can be found in the project repository.

2.1.5.1 Installation

The easiest way to install this service is to use docker. A docker image is automatically published with latest
changes under the name ghcr.io/eflows4hpc/hpcwaas-api:main.

At press time there is no released version of this service yet. We will follow semantic versioning to tag our releases
and containers. All the containers will be available in the project docker registry.

2.1.5.2 Running the service using docker

Please refer to the help of the hpcwaas-api container to know how to run it.

docker run ghcr.io/eflows4hpc/hpcwaas-api:main --help

2.2 Runtime Components

2.2.1 PyCOMPSs

COMPSs is a task-based programming model which provides parallel execution of applications on distributed
systems. Its model abstracts the application from the underlying distributed infrastructure, allowing it to be
portable between infrastructures with diverse characteristics. PyCOMPSs is the Python binding of COMPSs.

When developing with PyCOMPSs, distribution of the data, task scheduling, data dependency between tasks, and
fault tolerance issues are hidden to the user and are the responsibilities of the COMPSs Runtime. The COMPSs
Runtime is also able to react to task failures and exceptions in order to adapt the behaviour accordingly.

Programs written in a sequential way can be converted to PyCOMPSs applications simply by adding ‘task’ deco-
rators to the functions that can be executed in parallel with other tasks. These sample applications show how to
tag tasks to-be-parallelized.

Tasks in PyCOMPSs can be of different granularity, from fine grain tasks with short duration to invocation to
external binaries (including MPI applications) that last longer time. This flexibility enables PyCOMPSs to support
the development on workflows with heterogeneous task types.

Some useful links for more detailed information:

1. Source code.
2. Installation.

8 Chapter 2. Software Stack

https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.html
https://github.com/eflows4hpc/yorc
https://yorc.readthedocs.io/en/stable/
https://github.com/eflows4hpc/hpcwaas-api
https://github.com/eflows4hpc/hpcwaas-api/pkgs/container/hpcwaas-api
http://compss.bsc.es
https://compss.readthedocs.io/en/stable/Sections/07_Sample_Applications/02_Python.html
https://github.com/bsc-wdc/compss
https://compss.readthedocs.io/en/stable/Sections/00_Quickstart.html#install-compss

eFlows4HPC Documentation, 1.0

3. PyCOMPSs Tutorials.
4. PyCOMPSs Syntax Reference.

2.2.2 dataClay

dataClay is a distributed object store with active capabilities. It is designed to hide distribution details while
taking advantage of the underlying infrastructure, be it an HPC cluster or a highly distributed environment such
as edge-to-cloud. Objects in dataClay are enriched with semantics, giving them a structure as well as the possibility
to attach arbitrary user code to them. In this way, dataClay enables applications to store and access objects in
the same format they have in memory (Python or Java objects), also allowing them to execute object methods
within the store to exploit data locality. This active capability minimizes data transfers, as only the results of the
computation are transferred to the application, instead of the whole object.

dataClay implements the Storage Runtime Interface that PyCOMPSs can use to enhance data locality of parallalel
and distributed applications. This implementation hints the runtime scheduler to assign tasks that access data
managed by dataClay to the nodes containing that data, and allows to avoid the cost of serializing this data when
it is accessed from several tasks.

Some useful links for more detailed information:

1. Source code: https://github.com/bsc-dom
2. Examples: https://github.com/bsc-dom/dataclay-demos
3. User manual (see Chapter 7 for installation instructions): https://www.bsc.es/research-and-development/

software-and-apps/software-list/dataclay/documentation
4. Docker Hub repository: https://hub.docker.com/u/bscdataclay/

2.2.3 Hecuba

Hecuba is a set of tools and interfaces that implement a simple and efficient access to data stores for big data
applications. One of the goals of Hecuba is to provide programmers with an easy and portable interface to access
data. This interface is independent of the type of system and storage used to keep data, enhancing the portability of
the applications. Using Hecuba, the applications can access data like regular objects stored in memory and Hecuba
translates the code at runtime into the proper code, according to the backing storage used in each scenario. The
current implementation of Hecuba implements this interface for Python applications that store data in memory or
Apache Cassandra. Our next release will also include the implementation of an interface for C/C++ applications.

Hecuba also implements the Storage Runtime Interface that PyCOMPSs can use to enhance data locality of
parallalel and distributed applications. This implementation hints the runtime scheduler to assign tasks that
access data managed by Hecuba to the nodes containing that data, and allows to avoid the cost of serializing this
data when it is accessed from several tasks.

Some useful links for more detailed information:

1. Source code and installation instructions: https://github.com/bsc-dd/hecuba
2. Manual: https://github.com/bsc-dd/hecuba/wiki/1:-User-Manual

2.3 ML and DA Frameworks

2.3.1 dislib

The Distributed Computing Library (dislib) is a library that provides various distributed machine-learning algo-
rithms. It has been implemented on top of PyCOMPSs, with the goal of facilitating the execution of big data
analytics algorithms in distributed platforms, such as clusters, clouds, and supercomputers.

Dislib comes with two primary programming interfaces: an API to manage data in a distributed way and an
estimator-based interface to work with different machine learning models.

Dislib main data structure is the distributed array (ds-array) that enables to distribute the data sets in multiple
nodes of a computing infrastructure. The typical workflow in dislib consists of the following steps:

2.3. ML and DA Frameworks 9

https://compss.readthedocs.io/en/stable/Sections/10_Tutorial/02_PyCOMPSs.html
https://compss.readthedocs.io/en/stable/Sections/02_App_Development/02_Python.html
https://dataclay.bsc.es/
https://compss-doc.readthedocs.io/en/stable/
https://github.com/bsc-dom
https://github.com/bsc-dom/dataclay-demos
https://www.bsc.es/research-and-development/software-and-apps/software-list/dataclay/documentation
https://www.bsc.es/research-and-development/software-and-apps/software-list/dataclay/documentation
https://hub.docker.com/u/bscdataclay/
https://github.com/bsc-dd/hecuba
https://cassandra.apache.org/_/index.html
https://compss-doc.readthedocs.io/en/stable/
https://github.com/bsc-dd/hecuba
https://github.com/bsc-dd/hecuba/wiki/1:-User-Manual
https://dislib.bsc.es/
https://www.bsc.es/research-and-development/software-and-apps/software-list/comp-superscalar/

eFlows4HPC Documentation, 1.0

• Reading input data into a ds-array.
• Creating an estimator object.
• Fitting the estimator with the input data.
• Getting information from the model’s estimator or applying the model to new data.

Some useful links for more detailed information:

1. Source code.
2. Installation.
3. Tutorial.

2.3.2 EDDL

EDDL is an open-source software for deployment of neural network models on different target devices. EDDL
allows the instantiation of many of the current neural network topologies, including CNNs, MLP, and Recurrent
networks, performing training and inference. Training can be deployed in an HPC system by the use of COMPSs
and MPI/NCCL. For this, a distributed training algorithm is used.

Inside EDDL, a Tensor class is provided with all required tensor manipulation functions needed in neural networks.
Currently, EDDL runs on CPU systems, GPU (NVIDIA devices) systems and FPGAs (Xilinx devices). EDDL
allows a transparent use of devices.

EDDL is written in C++. A python wrapper is available. EDDL is available on github.

Complete documentation (description, usage, API, examples) is available.

2.3.2.1 Installation

EDDL allows different methods for installation. The simplest one is by using conda:

conta install -c deephealth eddl-cpu

More information and alternatives are available in the installation section of the documentation page.

2.3.2.2 Usage

When EDDL is installed basic and advanced examples are compiled and build. Therefore, the user can practice
with these exameples in order to get experience with the library and how can be used. On the documentation page
video tutorials are provided aswell.

2.3.3 HeAT

HeAT is a flexible and seamless open-source software for high performance data analytics and machine learning.
It provides highly optimized algorithms and data structures for tensor computations using CPUs, GPUs and
distributed cluster systems on top of MPI. The goal of Heat is to fill the gap between data analytics and machine
learning libraries with a strong focus on single-node performance, and traditional high-performance computing
(HPC). Heat’s generic Python-first programming interface integrates seamlessly with the existing data science
ecosystem and makes it as effortless as using numpy to write scalable scientific and data science applications.

HeAT allows you to tackle your actual Big Data challenges that go beyond the computational and memory needs
of your laptop and desktop.

10 Chapter 2. Software Stack

https://github.com/bsc-wdc/dislib
https://dislib.readthedocs.io/en/stable/quickstart.html#quickstart-guide
https://compss.readthedocs.io/en/stable/Sections/10_Tutorial/07_Dislib.html
https://github.com/deephealthproject/eddl
https://deephealthproject.github.io/eddl/index.html
https://deephealthproject.github.io/eddl/intro/installation.html
https://deephealthproject.github.io/eddl/index.html

eFlows4HPC Documentation, 1.0

2.3.3.1 Installation

The simplest way of installing HeAT is to use pip:

pip install heat[hdf5,netcdf]

More information can be found in project’s git repository.

2.3.3.2 Usage

HeAT main features are:

• support for high-performance n-dimensional tensors
• efficient CPU, GPU and distributed computation using MPI
• powerful data analytics and machine learning methods
• abstracted communication via split tensors
• easy to grasp Python API

There are many usage examples in the git repository and documentation. A good starting point for initial explo-
ration is also the tutorial.

2.3.4 Ophidia

Ophidia is a CMCC Foundation research effort addressing Big Data challenges for eScience. The Ophidia framework
represents an open source solution for the analysis of scientific multi-dimensional data, joining HPC paradigms and
Big Data approaches. It provides an environment targeting High Performance Data Analytics (HPDA) through
parallel and in-memory data processing, data-driven task scheduling and server-side analysis. The framework
exploits an array-based storage model, leveraging the datacube abstraction from OLAP systems, and a hierarchical
storage organisation to partition and distribute large multi-dimensional scientific datasets over multiple nodes.
Ophidia is primarily used in the climate change domain, although it has also been successfully exploited in other
scientific domains.

Software license: GPLv3.

2.3.4.1 Installation

The framework is composed by different software components. The source code for the various components is
available on GitHub.

The installation guide is available in the documentation.

For the client side, Ophidia also provides the Python bindings, called PyOphidia. To install PyOphidia:

pip install pyophidia

or to install in a Conda environment:

conda install -c conda-forge pyophidia

2.3. ML and DA Frameworks 11

https://github.com/helmholtz-analytics/heat/
https://github.com/helmholtz-analytics/heat/
https://heat.readthedocs.io/en/latest/
https://github.com/helmholtz-analytics/heat/blob/master/scripts/tutorial.ipynb
https://ophidia.cmcc.it
https://www.cmcc.it/
https://github.com/OphidiaBigData
https://ophidia.cmcc.it/documentation/admin/index.html
https://pypi.org/project/PyOphidia/

eFlows4HPC Documentation, 1.0

2.3.4.2 Usage

Ophidia provides features for data management and analysis, such as:

• data reduction and subsetting
• data intercomparison
• array processing
• time series analysis
• statistical and mathematical operations
• data manipulation and transformation
• interactive data exploration

The user guide documents all the available Ophidia features.

2.3.5 ParSoDA

ParSoDA (Parallel Social Data Analytics) is a high-level library for developing parallel data mining applications
based on the extraction of useful knowledge from large data set gathered from social media. The library aims at
reducing the programming skills needed for implementing scalable social data analysis applications.

The main idea behind ParSoDA is to simplify the creation of data analysis applications, making some aspects
of development transparent to the programmer. The main effort for developing ParSoDA was to create a set
of interfaces, abstract classes and concrete classes that could be reused several times and in a modular way for
composing scalable and distributed data analysis workflows. The first prototype of ParSoDA was built on Apache
Hadoop. Another version of ParSoDA based on Spark has been implemented. The Spark version has proven to
offer several performance benefits compared to the Hadoop-based version. We are now working on a new version
based on PyCOMPSs.

2.3.5.1 Source code

The source code of ParSoDA is available here.

The current version of the library (v. 1.3.0 dated October 25, 2018) contains more than forty predefined functions
organized in seven packages, corresponding to the seven ParSoDA steps.

2.3.5.2 Installation and use guide

The software requirements of ParSoDA are:

• Java JDK 1.8 or higher
• Maven as dependency manager and build automation tool. We used Maven for our convenience, but it

doesn’t mean that other valid solutions, such as Gradle, can’t be used.
• GIT as versioning tool

The current version of ParSoDA has been tested with Hadoop 2.7.4, but we are working on addressing some minor
issues to make it work with Hadoop version 3.

On the ParSoDA project available on GitHub, you can find a dedicated branch containing a docker-compose
file that can be used to quickly deploy a Hadoop cluster with only 1 node, which can be used to test ParSoDA
applications.

1) Clone the master branch of the ParSoDA’s project from GitHub:

git clone --branch master https://github.com/SCAlabUnical/ParSoDA.git

2) After cloning the project, you have to launch the following command to download and install all the project
dependencies:

mvn install

12 Chapter 2. Software Stack

https://ophidia.cmcc.it/documentation/users/index.html
https://github.com/SCAlabUnical/ParSoDA
https://github.com/SCAlabUnical/ParSoDA

eFlows4HPC Documentation, 1.0

3) If required, add to the Maven project any external libraries you need. For example, the sample applications
presented today required two external JAR libraries. In particular, we used SPMF, which is an open-source
data mining library written in Java, specialized in pattern mining. We also used a Hadoop implementation of
the well-known PrefixSpan algorithm, called MGFSM, to extract frequent sequential patterns. To import
these libraries, you can run the following commands:

mvn install:install-file -Dfile=./libs/spmf.jar -DgroupId=ca.pfv.spmf -DartifactId=spmf -
→˓Dversion=1.0.0 -Dpackaging=jar

mvn install:install-file -Dfile=./libs/mgfsm-hadoop.jar -DgroupId=de.mpii.fsm -
→˓DartifactId=mgfsm-hadoop -Dversion=1.0.0 -Dpackaging=jar

4) Finally, to build an executable JAR you can use the following command:

mvn package.

The library code has been organized into packages, which follow the 7 main steps that compose the execution flow
of ParSoDA: acquisition, filtering, mapping, reduction, partitioning, analysis, and visualization. It is organized in
packages among which we find the followings:

• The package “app” contains some runnable example of data analysis applications based on ParSoDA;
• The package “common” contains the core classes of ParSoDA, including data models, intefaces, abstract

classes, and so on;
• The package “acquisition” contains the classes of some data crawlers that can be used for collecting data

from social media platforms. Currently, it contains 2 crawlers for social media platforms (i.e., Twitter and
Flickr), plus a dummy crawler (called FileReaderCrawler) that allow to load data from local filesystem or
HDFS filesystem;

• All other packages contains some pre-built functions for each corresponding block of a ParSoDA application.

2.3. ML and DA Frameworks 13

eFlows4HPC Documentation, 1.0

14 Chapter 2. Software Stack

Chapter 3

Programming Interfaces for integrating
HPC and DA/ML workflows

The evolution of High-Performance Computing (HPC) platforms enables the design and execution of progressively
more complex and larger workflow applications in these systems. The complexity comes not only from the number
of elements that compose a workflow but also from the type of computations performed. While traditional HPC
workflows include simulations and modeling tasks, current needs require in addition Data Analytic (DA) and
artificial intelligence (AI) tasks. However, the development of these workflows is hampered by the lack of proper
programming models and environments that support the integration of HPC, DA, and AI. Each of these workflow
phases are developed using dedicated frameworks for the specific problem to solve. However, to implement the
overall workflow, developers have to deal with programming large glue code to integrate the execution of the
different frameworks executions in a single workflow.

eFlows4HPC proposes a programming interface to try to reduce the effort required to integrate different frameworks
in a single workflow. This integration can be divided in two parts:

• Software Invocation Management: It includes the actions required to execute an application with a
certain framework. This can be invoking just a single binary, a MPI application or a model training with a
certain ML framework.

• Data Integration: In includes the transformations that the data generated by a framework has to be
applied to be used by another framework. This can include transformations like transpositions, filtering or
data distribution.

The proposed interface aims at declaring the different software invocations required in a workflow as simple python
functions. This functions will be annotated by two decorators :

• @software to describe the type of execution to be performed when the function is invoked from the main
code

• @data_transformation to indicate the required data transformations that a parameter of the invocation
has to apply to be compatible with the input of expected execution.

For this first iteration, we have defined the software invocation descriptions and we have extended the PyCOMPSs
programming model and runtime. Next versions of the eFlows4HPC framework will include the definition of the
data transformations and their implementation.

15

eFlows4HPC Documentation, 1.0

3.1 Software Invocation Description

The idea behind the ‘Software’ invocation description is to define a common way in which multiple software
components can be integrated in single workflow. The definition is composed of a decorator and a configuration
file with the necessary parameters.

3.1.1 Software decorator

@software decorator is used to indicate that a certain python function represents the invocation of and external
HPC or DA programs in a single workflow. This decorator must be combined with the ‘task’ decorator to indicate
de directionality of the parameters and allow the runtime to detect the dependencies with the rest of workflow tasks.
When a task with the @software decorator is called, an external program is executed respecting the configuration
defined in its configuration file. The goal of this decorator is to describe the execution of whatever external
programs included in a workflow from simple binary executable to complex MPI applications.

3.1.2 Configuration File

A configuration file must have two mandatory keys; type and properties. ‘Type’ is needed to specify exactly what
type of program the user wants to execute (e.g: “mpi”, “binary”). And the properties will contain the customizable
properties of a type of execution such as binary path, number of processes, etc.

3.1.3 Examples

As an example, the following code snippets show how an MPI application execution can be defined using the
@software decorator. Users only have to add the software decorator on top of the task function, and provide a
‘config_file’ parameter where the configuration details are defined:

from pycompss.api.software import software
from pycompss.api.task import task

@software(config_file="mpi_config.json")
@task()
def task_python_mpi():

pass

And inside the configuration file the type of program, and its properties are explicitly set. For example, if the user
wants to run an MPI job with two processes using ‘mpirun’ command, the configuration file (“mpi_config.json”
in this example) should look like as follows:

{
"type":"mpi",
"properties":{

"runner": "mpirun",
"binary": "app_mpi.bin",
"processes": 2

}
}

Finally, call to the task function from the main program:

task_python_mpi()

It is also possible to refer to task parameters from the configuration file. Properties such as working_dir and
params (‘params’ strings are command line arguments to be passed to the ‘binary’) can contain this kind of
references. In this case, the task parameters should be surrounded by curly braces. For example, in the following

16 Chapter 3. Programming Interfaces for integrating HPC and DA/ML workflows

eFlows4HPC Documentation, 1.0

example, ‘work_dir’ and ‘param_d’ parameters of the python task are used in the ‘working_dir’ and ‘params’
strings, respectively . Moreover, the number of computing units is added as a constraint, to indicate that every
MPI process will have this requirement (run with 2 threads):

Task definition:

from pycompss.api.software import software
from pycompss.api.task import task

@software(config_file="mpi_w_params.json")
@task()
def task_mpi_w_params(work_dir, param_d):

pass

Configuration file (“mpi_w_params.json”):

{
"type":"mpi",
"properties":{

"runner": "mpirun",
"binary": "parse_params.bin",
"working_dir": "/tmp/{{work_dir}}",
"params": "-d {{param_d}}"

},
"constraints":{

"computing_units": 2
}

}

Call to the task function:

task_mpi_w_params('my_folder', 'hello_world')

Another example can be when the external program is expected to run within a container. For that, the user
can add the container configuration to the JSON file by specifying its ‘engine’ and the ‘image’. At the time of
execution, the Runtime will execute the given program within the container. For example, in order to run a simple
‘grep’ command that searches for a pattern (e.g. an ‘error’) in the input file within a Docker container, the task
definition and the configuration file should be similar to the examples below:

Task definition:

from pycompss.api.parameter import FILE_IN
from pycompss.api.software import software
from pycompss.api.task import task

@software(config_file="container_config.json")
@task(in_file=FILE_IN)
def task_container(in_file, expression):

pass

Configuration file (“container_config.json”):

{
"type":"binary",
"properties":{

"binary": "grep",
"params": "{{expression}} {{in_file}}"

},
"container":{

(continues on next page)

3.1. Software Invocation Description 17

eFlows4HPC Documentation, 1.0

(continued from previous page)

"engine": "DOCKER",
"image": "compss/compss"

}
}

Call to the task function:

task_container('some_file.txt', 'error')

Warning: Limitation: Currently it is not possible to run MPI jobs within containers.

For more detailed information about the @software decorator of PyCOMPSs please see the documentation.

18 Chapter 3. Programming Interfaces for integrating HPC and DA/ML workflows

https://compss.readthedocs.io/en/latest/Sections/02_App_Development/02_Python/01_Task_definition/Sections/06_Other_task_types.html#software-decorator

Chapter 4

HPCWaaS Methodology

The eFlows4HPC proposes the HPC Workflow as a Service (HPCWaaS) methodology which tries to apply the
usage model of the Functions as a Service (FaaS) in Cloud environments to the workflows for HPC systems. In
this model, two main roles are identified. From one side, the function developer is in charge of developing and
registering the function in the FaaS platform, which transparently deploys the function in the cloud infrastructure.
On the other side, the final user executes the deployed function using a REST API. In the case of running workflows
in HPC systems, we can find similar roles. First, we can find the workflow developer, which is charge of developing
and deploying the workflow in the computing infrastructure, and the users’ communities which are usually scientist
who want to execute the workflow and collect their results to advance in their scientific goals.

Figure 3: HPC Workfow as a Service overview

Figure 3 shows how these two roles interacts with the proposed HPCWaaS methodology. Workflow developers
implement and describe the workflow in a way that allows the eFlows4HPC Gateway services to automatically
deploy and orchestrate the workflow execution. This is done interacting with the Development Interface offered
by the Alien4Cloud tool to describe workflows as a TOSCA application. Once the workflow is deployed users’
communities can invoke this workflow using the Execution API.

19

eFlows4HPC Documentation, 1.0

Next sections provide more details about these interfaces. A simple workflow example can be found here.

4.1 Development Interface

4.1.1 Setup

4.1.1.1 Alien4Cloud & Yorc

Please refer to the documentation of the Alien4Cloud & Yorc project for more information.

An instance of Alien4Cloud and Yorc is available on Juelich cloud, ask to the project to obtain access

4.1.1.2 Importing required components into Alien4Cloud

Some TOSCA components and topology templates need to be imported into Alien4Cloud. If you are using the
instance on Juelich cloud, this is already done and you can move to the next paragraph.

You should first move to the Catalog tab and then the Manage archives tab, finally click on Git import to add
components as shown in Figure 4.

Figure 4: Click on Git import to add components

You should have at least the three repositories defined as shown in Figure 5:

Figure 5: Click on Git location to define imports from a git repository

Click on Git location to define imports from a git repository as shown in Figure 6

Once done you can click on Import all.

20 Chapter 4. HPCWaaS Methodology

eFlows4HPC Documentation, 1.0

Figure 6: Alien4Cloud setup a catalog git repository

4.1. Development Interface 21

eFlows4HPC Documentation, 1.0

4.1.2 Creating an application based on the minimal workflow example

Move to the Applications tab and click on New application as shown in Figure 7.

Figure 7: Manage applications in Alien4Cloud

Then create a new application based on the minimal workflow template as shown in Figure 8

Edit the topology to fit your needs as shown in Figure 9.

Then click on Deploy to deploy the application as shown in Figure 10.

4.1.3 Make your workflow available to end-users using the HPCWaaS API

In order for the HPCWaaS API to know which workflow to allow users to use, you should add a specific tag to
your Alien4Cloud application. Move to your application main panel and under the Tags section add a tag named
hpcwaas-workflows as shown in Figure 11. The tag value should be a coma-separated list of workflow names
that could be called through the HPC HPCWaaS API. In the minimal workflow example, this tag value should be
exec_job.

4.2 Execution API

The execution API is still under active development and is subject to changes. Please refer to the repository
documentation for a detailed description of the current status of the different endpoints of this API.

A Command Line Interface (CLI) allows to interact with the service. It is available as a container. Please refer to
the help of the waas container to know how to run it.

docker run ghcr.io/eflows4hpc/hpcwaas-api:main-cli --help

The API can also be accessed directly through its HTTP interface with tools like curl or any programming
language.

There is a running instance on Juelich cloud, ask to the team for access to the API.

22 Chapter 4. HPCWaaS Methodology

https://github.com/eflows4hpc/hpcwaas-api/blob/main/docs/rest-api.md

eFlows4HPC Documentation, 1.0

Figure 8: Alien4Cloud create a template based application

4.2. Execution API 23

eFlows4HPC Documentation, 1.0

Figure 9: Alien4Cloud minimal workflow topology

24 Chapter 4. HPCWaaS Methodology

eFlows4HPC Documentation, 1.0

Figure 10: Alien4Cloud deploy an application

Figure 11: Alien4Cloud add tags to an application

4.2. Execution API 25

eFlows4HPC Documentation, 1.0

4.2.1 Basic usage

First you need to setup your SSH credentials using the Create an SSH Key Pair for a given user
endpoint <https://github.com/eflows4hpc/hpcwaas-api/blob/main/docs/rest-api.md#create-an-ssh-key-pair-for-a-
given-user>_. By calling this endpoint the API will create a new SSH key pair and store it into a vault you will
receive in return of this call the public key. You will never get or even see the private key. Add this public key as
an authorized key for your HPC user account in order to let transfer data to your user account and run PyCOMPS
jobs for you in an automated way.

Then you can use the list available workflows endpoint to get the list of endpoints you can access.

You can then trigger a workflow execution.

And finally monitor the workflow execution.

26 Chapter 4. HPCWaaS Methodology

https://github.com/eflows4hpc/hpcwaas-api/blob/main/docs/rest-api.md#list-available-workflows
https://github.com/eflows4hpc/hpcwaas-api/blob/main/docs/rest-api.md#trigger-a-workflow-execution
https://github.com/eflows4hpc/hpcwaas-api/blob/main/docs/rest-api.md#monitor-a-workflow-execution

Chapter 5

Usage Example

This section describe a minimal usage example on how to implement, deploy and execute a workflow using the
eFlows4HPC Software Stack. This example workflow consists of two main steps:

• a data logistic pipeline, where the input data is moved from an EU Data repository to the parallel file system
of a supercomputer where it will be processed in the second step.

• a PyCOMPSs workflow, where an word-count computation is parallelized across the nodes of an HPC facility
using a task-based programming model .

The deployment and execution of these two steps are described as a TOSCA application using the HPCWaaS
methodology.

In this first version of the workflow, we have assumed that the required software and the access credentials
are already deployed in the infrastructure. Next versions of this document will include how to do it with the
eFlows4HPC Software Stack.

Next sections provide more details about how the different steps are implemented.

5.1 Implementing Data Logistics Pipeline

Data movements in eFlows4HPC minimal workflow are orchestrated by the Data Logistics Service and defined
within it as Airflow Pipelines. The pipelines formally are Direct Acyclic Graphs (DAGs) and are defined program-
matically with Python.

Each DAG definition is comprised of set of tasks and additional metadata. The metadata can be used to, e.g.,
orchestrate periodic data movements. The tasks are then executed by Airflow workers. The most common type
of tasks are Operators. Airflow provides a wide range of Operators to interact with different data services and
storages. It is also possible to create own operators.

Following will provide a short introduction to Data Logistics Pipelines based on the example of the eFlows4HPC
minimal workflow. The complete source code of the minimal workflow pipeline can be found in repository. The
workflow is build following the principle of Extract Transform Load (ETL) and uses Airflow taskflow API to define
a DAG.

27

https://gitlab.jsc.fz-juelich.de/eflows4hpc-wp2/data-logistics-service/-/blob/main/dags/taskflow.py

eFlows4HPC Documentation, 1.0

5.1.1 DAG Definition

The structure of DAG is defined as follows:

@dag(default_args=default_args, schedule_interval=None, start_date=days_ago(2), tags=['example
→˓'])
def taskflow_example():

@task
def setup(**kwargs):

....

@task(multiple_outputs=True)
def extract(conn_id, **kwargs):

....

....

conn_id = setup()
data = extract(conn_id)
files = transform(data)
ucid = load(connection_id = conn_id, files=files)
remove(conn_id=ucid)

dag = taskflow_example()

The DAG is defined as a Python annotated function taskflow_example. The submethods annotated with @task
are Operators, finally the dependencies between tasks emerge from the order of function calls in the taskflow_-
example method.

5.1.2 Data Movement Tasks

The minimal workflow encompasses following data movements:

• download from B2SHARE repository,
• upload to target system with SCP/SFTP,
• upload computation results to B2SHARE repository.

The code for accessing and downloading from B2SHARE can be seen in repository. Objects in B2SHARE comprise
of an id, set of metadata and list of files. To identify which object needs to be downloaded, the object id needs to
be passed to the DAG as an oid parameter. The workflow will then locate the object in the B2SHARE, retrieve
the list of its files (extract task), and download the files to the local storage with the transform task. There
is also an example of streaming pipeline (which does not download to local storage but rather directly to target
location), it can be found in repository.

Next step in data movement is to use SCP to upload the files from B2SHARE to the target system. This is done
in the load task. The task uses functionality provided by Airflow to access SSH/SCP systems.

28 Chapter 5. Usage Example

https://gitlab.jsc.fz-juelich.de/eflows4hpc-wp2/data-logistics-service/-/blob/main/dags/taskflow.py
https://gitlab.jsc.fz-juelich.de/eflows4hpc-wp2/data-logistics-service/-/blob/main/dags/taskflow.py

eFlows4HPC Documentation, 1.0

5.1.3 Connection setup

The credentials needed to access storages are passed to the DAG. Based on their content a temporary Airflow
connection is created, used by Data Movement Tasks and removed subsequently. The connection management is
taken care of by setup and remove tasks.

5.1.4 Closing remarks

Please review the examples in the repository to gain understanding how the data movements are realized. There are
examples of upload/download to remote repository, streaming, accessing storages through SCP/SFTP or HTTP.

The repository also includes a set of tests and mocked tests to verify the correctness of the pipelines.

For local testing, you can use airflow standalone setup. Please refer to Airflow documentation for that.

5.2 PyCOMPSs Workflow

PyCOMPSs is a task-based programming model which allow to define parallel workflows as simple sequential
python scripts. To implement a PyCOMPSs application, developers has to identify what parts of an application
are the candidates to be a task. They are usually python methods with a certain computation granularity (larger
than hundred milisecons) that can potentially run concurrently with other parts of the application. Those methods
have to be annotated with the @task decorator to indicate the directionality of they parameters.

Code 1 shows how to program a PyCOMPSs workflow for counting the words in a folder. It can be found in
the application repository. The code is similar to what a developer will write in a sequential python code. Two
methods are defined in the application: the wordcount to count the words of a file; and the merge_dicts to merge
the results of the separate wordcount tasks. On top of these methods, we have added the @task decorator to convert
it to a PyCOMPSs task, indicating the directionality of the parameters and returns. Based on these annotations,
the COMPSs runtime will detect that all wordcount invocations are independent and the merge_dicts ones will
depend to the wordcount task of the same iteration and the merge_dicts of the previous one.

Code 1: PyCOMPSs wordcount example

@task(file_path=FILE_IN, returns=dict)
def wordCount(file_path):

""" Construct a frequency word dictorionary from a list of words.
:file_path: file to count words
:return: a dictionary where key=word and value=#appearances
"""
partialResult = {}
with open(file_path, 'r') as f:

for line in f:
data = line.split()
for entry in data:

if entry in partialResult:
partialResult[entry] += 1

else:
partialResult[entry] = 1

return partialResult

@task(returns=dict, priority=True)
def merge_dicts(dic1, dic2):

""" Update a dictionary with another dictionary.
:param dic1: first dictionary
:param dic2: second dictionary
:return: dic1+=dic2

(continues on next page)

5.2. PyCOMPSs Workflow 29

https://gitlab.jsc.fz-juelich.de/eflows4hpc-wp2/data-logistics-service/-/blob/main/dags/taskflow.py
https://airflow.apache.org
https://github.com/bsc-wdc/apps

eFlows4HPC Documentation, 1.0

(continued from previous page)

"""
for k in dic2:

if k in dic1:
dic1[k] += dic2[k]

else:
dic1[k] = dic2[k]

return dic1

if __name__ == "__main__":
from pycompss.api.api import compss_wait_on

Get the dataset path
pathDataset = sys.argv[1]

Read file's content execute a wordcount on each of them
partialResult = []
for fileName in os.listdir(pathDataset):

path = os.path.join(pathDataset, fileName))
partialResult.append(wordCount(path))

Accumulate the partial results to get the final result.
result = {}
for partial in partialResult:

result = merge_dicts(result, partial)

Synchronize remote result
result = compss_wait_on(result)

Print the results and elapsed time
print("Word appearances:")
from pprint import pprint
pprint(result)

A part from python methods, developers can integrate executions of other software in PyCOMPSs workflows by
means of the @software decorator described in the Software invocation description section.

5.3 Integration in TOSCA

To support the integration of this usage example we defined a set of new TOSCA components.

First we defined new types for the Data Logistics Service and PyCOMPSs workflows. Then we defined a TOSCA
topology template called the “minimal workflow” that compose these two previous components into a TOSCA
application that allows to run workflows that first transfer data from the Data Catalog to an HPC cluster and
then run a PyCOMPSs workflow.

30 Chapter 5. Usage Example

eFlows4HPC Documentation, 1.0

5.3.1 Data Logistics Service TOSCA component

The source code of this component is available in the dls-tosca github repository in the eFlows4HPC organization.

This component interacts with the Airflow RESTful API to trigger and monitor the execution of an airflow pipeline.
It was designed to be as generic as possible in order to support different kind of pipelines.

Code 2 is a simplified (for the sake of clarity) version of the TOSCA type definition of the Data Logistics Service
that shows the configurable properties that can be set for this component.

Code 2: Extract of the TOSCA definition for DLS

dls.ansible.nodes.DLSDAGRun:
derived_from: org.alien4cloud.nodes.Job
metadata:

icon: airflow-icon.png
properties:

dls_api_url:
type: string
required: true

dls_api_username:
type: string
required: true

dls_api_password:
type: string
required: true

dag_id:
type: string
required: true

oid:
type: string
description: Transferred Object ID
required: true

target_host:
type: string
description: the remote host
required: true

target_path:
type: string
description: path of the file on the remote host
required: true

extra_conf:
type: map
required: false
entry_schema:

description: map of key/value to pass to the dag as inputs
type: string

5.3. Integration in TOSCA 31

https://github.com/eflows4hpc/dls-tosca

eFlows4HPC Documentation, 1.0

5.3.2 PyCOMPSs TOSCA component

The source code of this component is available in the pycomps-tosca github repository in the eFlows4HPC orga-
nization.

This component connects to an HPC cluster using SSH and then run and monitor a PyCOMPSs workflow. Again,
this component was designed to be as generic as possible in order to support different kind of workflows.

Code 3 is a simplified (for the sake of clarity) version of the TOSCA type definition of the PyCOMPSs workflow
that shows the configurable properties that can be set for this component.

Code 3: Extract of the TOSCA definition for PyCOMPSs

pycomps.ansible.nodes.PyCOMPSJob:
derived_from: org.alien4cloud.nodes.Job
metadata:

icon: COMPSs-logo.png
properties:

pycomps_endpoint:
type: string
description: The endpoint of the PyCOMPSs server
required: true

num_nodes:
type: integer
required: false
default: 1

data_path:
type: string
required: false
default: ""

command:
type: string
required: true

arguments:
type: list
required: false
entry_schema:

description: list of arguments
type: string

5.3.3 Minimal workflow TOSCA topology template

The source code of this template is available in the minimal-workflow github repository in the eFlows4HPC
organization.

This topology template composes the DLS and PyCOMPSs components into a TOSCA application that allows to
run a workflow which first transfer a data from the Data Catalog to an HPC cluster and then run an PyCOMPSs
workflow.

Code 4 shows how are defined the components and how they are connected together in order to run in sequence.
Figure 12 shows the same topology in a graphical way.

Code 4: Extract of the TOSCA topology template for the minimal
workflow

topology_template:
inputs:

dls_api_username:
type: string

(continues on next page)

32 Chapter 5. Usage Example

https://github.com/eflows4hpc/pycomps-tosca
https://github.com/eflows4hpc/minimal-workflow

eFlows4HPC Documentation, 1.0

(continued from previous page)

required: true
dls_api_password:

type: string
required: true

node_templates:
DLSDAGRun:

metadata:
a4c_edit_x: 231
a4c_edit_y: "-339"

type: dls.ansible.nodes.DLSDAGRun
properties:

dls_api_url: "http://134.94.199.73:7001/api/v1"
dls_api_username: { get_input: dls_api_username }
dls_api_password: { get_input: dls_api_password }
dag_id: "taskflow_example"
oid: dba52935c7e444d198b377876b4fe0a8
target_host: "amdlogin.bsc.es"
target_path: "/home/bsc44/bsc44070/dls_transfert/data/"

PyCOMPSJob:
metadata:

a4c_edit_x: 243
a4c_edit_y: "-176"

type: pycomps.ansible.nodes.PyCOMPSJob
properties:

pycomps_endpoint: "amdlogin.bsc.es"
num_nodes: 2
data_path: "/home/bsc44/bsc44070/dls_transfert/data/"
command: "~/wordcount_blocks/src/wordcount_blocks.py"
arguments:

- "${DATA_PATH}/data.txt"
- "${DATA_PATH}/result.txt"
- 3000

requirements:
- dependsOnDlsdagRunFeature:

type_requirement: dependency
node: DLSDAGRun
capability: tosca.capabilities.Node
relationship: tosca.relationships.DependsOn

Code 5 shows inputs that are required to run the workflow.

Code 5: Extract of the TOSCA definition for PyCOMPSs

workflows:
exec_job:

inputs:
user_id:

type: string
required: true

oid:
type: string
required: true

target_path:
type: string
required: true

num_nodes:
(continues on next page)

5.3. Integration in TOSCA 33

eFlows4HPC Documentation, 1.0

Figure 12: Alien4Cloud minimal workflow topology

34 Chapter 5. Usage Example

eFlows4HPC Documentation, 1.0

(continued from previous page)

type: integer
required: false
default: 1

5.3. Integration in TOSCA 35

	Table of contents
	List of figures
	List of tables
	eFlows4HPC Overview
	More information:
	Acknowledgements

	Software Stack
	Gateway Services
	Data Catalog
	Data Logistics Service
	Alien4Cloud
	Ystia Orchestrator
	Workflow Execution Service
	Installation
	Running the service using docker

	Runtime Components
	PyCOMPSs
	dataClay
	Hecuba

	ML and DA Frameworks
	dislib
	EDDL
	Installation
	Usage

	HeAT
	Installation
	Usage

	Ophidia
	Installation
	Usage

	ParSoDA
	Source code
	Installation and use guide

	Programming Interfaces for integrating HPC and DA/ML workflows
	Software Invocation Description
	Software decorator
	Configuration File
	Examples

	HPCWaaS Methodology
	Development Interface
	Setup
	Alien4Cloud & Yorc
	Importing required components into Alien4Cloud

	Creating an application based on the minimal workflow example
	Make your workflow available to end-users using the HPCWaaS API

	Execution API
	Basic usage

	Usage Example
	Implementing Data Logistics Pipeline
	DAG Definition
	Data Movement Tasks
	Connection setup
	Closing remarks

	PyCOMPSs Workflow
	Integration in TOSCA
	Data Logistics Service TOSCA component
	PyCOMPSs TOSCA component
	Minimal workflow TOSCA topology template

